
Interaction-Aware Energy Management for Wireless
Network Cards

Igor Crk, Mingsong Bi, Chris Gniady
Department of Computer Science, University of Arizona

Tucson, AZ 85704
icrk@cs.arizona.edu, mbi@cs.arizona.edu, gniady@cs.arizona.edu

Abstract
Wireless Network Interface Cards (WNICs) are part of every
portable device, where efficient energy management plays a
significant role in extending the device’s battery life. The
goal of efficient energy management is to match the perfor-
mance of the WNIC to the network activity shaped by a
running application. In the case of interactive applications
on mobile systems, network I/O is largely driven by user
interactions. Current solutions either require application
modifications or lack a sufficient context of execution that is
crucial in making accurate and timely predictions. This pa-
per proposes a range of user-interaction-aware mechanisms
that utilize a novel approach of monitoring a user’s interac-
tion with applications through the capture and classification
of mouse events. This approach yields considerable improve-
ments in energy savings and delay reductions of the WNIC,
while significantly improving the accuracy, timeliness, and
computational overhead of predictions when compared to
existing state-of-the-art solutions.

Categories and Subject Descriptors
D.4.4 [Operating Systems]: Communications Management—
Input/Output; Network Communication

General Terms
Design, Experimentation, Measurement, Performance

1. INTRODUCTION
Mobile devices have become an everyday part of our life.

We depend on them for our computation, communication,
and entertainment. An ever-increasing demand for perfor-
mance, functionality, and better user interfaces has resulted
in the demand for longer battery life. However, as advances
in battery technology continue to lag behind the demands
placed upon the battery, power awareness has become an
important consideration in the design of mobile systems.
The challenge of designing energy efficient systems lies in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’08, June 2–6, 2008, Annapolis, Maryland, USA.
Copyright 2008 ACM 978-1-60558-005-0/08/06 ...$5.00.

understanding the role of user interaction in energy con-
sumption and in providing an energy-performance schedule
that adequately accommodates user demand. Furthermore,
by understanding user interaction we can optimize system
performance by tailoring it to a user’s patterns of interac-
tion.

Performance and energy consumption are tightly coupled
where higher performance is usually achieved at the cost of
increased power demand. However, the key observation is
that higher power demand does not necessarily translate into
an increase in energy consumption. For instance, hardware
in a higher performance state may complete a particular task
faster than the same hardware operating in a lower perfor-
mance state. This reduces the time during which the entire
system has to be on. On the other hand, a particular device
may not be required by all tasks and so may be operated in
a low performance state without a significant impact on the
performance of the executing application.

The challenge in designing efficient energy management
mechanisms is to provide a energy/performance schedule
that best matches the task at hand to transparently provide
energy savings while satisfying the performance demand.
Many energy management techniques have been proposed
ranging from hardware optimizations all of the way to appli-
cation transformation. However, most user interactions are
still hidden from the existing approaches, which are unable
to capture the context necessary for inferring what a user
demands. Monitoring user interaction provides not only the
necessary context of execution that was previously unavail-
able to the predictors, but also enables timely predictions
before the need for high performance arrives [2]. The timely
transition of a device to a desired performance/energy level
is critical to meet performance demand and achieve energy
efficiency.

In this paper, we show that the user interactions can be
easily monitored and exploited to increase both the timeli-
ness and accuracy of prediction mechanisms. More specif-
ically, we apply user-interaction-based prediction to reduce
energy consumption in Wireless Network Interface Cards
(WNICs) while maintaining good performance levels. Sub-
sequently, we propose and evaluate a range of prediction
mechanisms that balance accuracy, energy consumption, and
delay to provide energy efficient management of the WNIC.
Each mechanism incorporates high-level contextual informa-
tion about user’s activity to predict network access patterns
and provide desired energy/performance levels. The idea
is motivated by observing that network traffic (for interac-
tive applications) usually follows a specific interaction with

371

State Power (W)
PSM Idle .05
PSM Receive .85
PSM Transmit 1.05
CAM Idle .73
CAM Recive .91
CAM Transmit 1.16
PSM to CAM Switch .78
CAM to PSM Switch .67
Transition Time (s)
PSM to CAM .28
CAM to PSM .28

Table 1: WNIC energy consumption specifications.

the application interface. For instance, if the user is chat-
ting with a friend in a webcam-enabled instant messaging
application, when the webcam button is clicked it is rea-
sonable to expect additional network traffic. Therefore, the
proposed interaction-aware prediction mechanisms monitor
user interactions with the application interface and corre-
late such interactions with resulting network activity to pre-
dict future levels of I/O demand. As a result, this paper
makes the following set of contributions: (1) proposes a set
of low-overhead user-interaction-based predictors, (2) pro-
poses an implementation of transparent monitoring of user
and network activity, (3) performs comprehensive evalua-
tions of several proposed prediction mechanisms, (4) shows
significant improvement of WNIC energy efficiency, (5) inte-
grates multiple prediction mechanisms to mitigate variabil-
ity in user interactions.

2. MOTIVATION
The challenge in designing an energy efficient system is

to minimize energy consumption without sacrificing per-
formance. Therefore an ideal solution would provide the
performance level that closely matches the bandwidth de-
manded by the application. The IEEE 802.11 standard [12]
offers two energy management schedules: Continuous Aware
Mode (CAM) and Power Saving Mode (PSM). The default
operational mode for wireless network interfaces in portable
computers is CAM, where the WNIC is continuously ac-
tive and responds to a user’s requests immediately. CAM
provides highest performance both in terms of lowest de-
lay and highest effective bandwidth at a cost of high energy
consumption. Alternatively, PSM periodically wakes up the
network interface, switching it to a high power state at some
time interval during which transmissions can occur, this is
known as beaconing. Once transmissions complete, the net-
work interface goes back to sleep. This significantly reduces
power consumption [13], but also increases delays and de-
grades the performance of applications that demand high
bandwidth [4]. The delays in network transmissions due to
PSM keep the rest of the system operating for longer peri-
ods, resulting in higher overall energy consumption in the
system presenting a clear need for an adaptive system.

Table 1 illustrates the energy characteristics of the Lucent
Orinoco WaveLan Silver WNIC used in our study. We ob-
serve that PSM has much lower energy consumption than
CAM in the idle state. Therefore, when the application
does not transmit or receive any I/O or the bandwidth de-
mand is low the WNIC should remain in the PSM mode.

User Interactions

Low power/
performance

High power/
performance

STPM Time

Transition
Delay

Decision
Delay

High power/
performance

Interaction Aware

Transition
Delay

Monitoring

Time

Low power/
performance

TimeDevice in a proper state
Prediction

I/O requests

Prediction

Figure 1: Prediction timeliness example.

Systems with applications showing high bandwidth demand
should keep the WNIC in CAM, since transmission power
of CAM and PSM are comparable and CAM offers much
higher bandwidth. Furthermore, the delays associated with
PSM can extend the running time of the application and
result in higher energy consumption than CAM. However,
selecting the WNIC mode is not simple, since an application
may go through multiple states with varying bandwidth de-
mand. Keeping the WNIC in a single state either wastes
energy, as is the case with CAM, or increases transmission
delays and potentially increases energy consumption, as in
the case of PSM.

To accommodate different application behaviors, many
cards provide automatic switching between CAM and PSM,
based on the amount of traffic observed. Our WaveLan card
allows the network interface to remain in the PSM while
monitoring for traffic from the access point. If more than
one packet is waiting at the network interface, the WNIC
is switched to CAM. The WNIC is switched to PSM once
the transmission stops. This simple solution provides energy
savings for low transmission rates while providing good per-
formance for applications demanding high bandwidth. How-
ever, certain cases render this solution ineffective. First,
communication patterns that exchange one packet at a time
will keep the WNIC in PSM even if the applications re-
quire high bandwidth [4]. The pathological case for PSM
occurs with NFS directory listings, which can result in a 16-
32x slowdown as compared to CAM [4]. Second, small and
bursty transmissions may unnecessarily switch the WNIC
into CAM. Therefore, more sophisticated mechanisms are
needed to better adapt WNIC power mode switching to re-
flect an application’s performance demand.

To match application demand while saving energy, the
network card should be transitioned into CAM when high
bandwidth is demanded and remain in PSM when the band-
width demand is low. This observation motivated the devel-
opment of Self-Tuning Power Management (STPM) [4, 3] to
dynamically switch between CAM and PSM. STPM relies
on programmers for inserting accurate hints about upcoming
bandwidth demand into the application. As a result, STPM
can be very accurate, as the programmer knows what part
of the applications is executing and perhaps what kind of
demand can be expected from the user. However, this in-
troduces power management as another optimization dimen-
sion to already difficult programming requirements that tar-
get, among other things, performance, reliability, and usabil-
ity. To provide energy savings for unmodified applications,

372

STPM profiles network traffic to anticipate future network
activity [4]. Passively monitoring low-level network access
provides little information about user’s current context, how
the user is interacting with the application. In this case, the
context of execution of an application is completely lost and
heuristic profiling is not able to fully realize the potential of
STPM.

Context of execution is critical to providing accurate and
timely switching between power states to match the appli-
cation demand. Figure 1 shows an example of user interac-
tions with an application and the impact of STPM and user
Interaction-Aware Prediction (IAP) mechanisms on transi-
tion timeliness. As a result of user interactions the appli-
cation initiates network I/O activity. STPM evaluates ini-
tial I/O requests to verify the need for higher bandwidth
and the network interface is switched to the high perfor-
mance mode when the need for high bandwidth is detected.
We observe that both the evaluation period and the mode
transition period impact the performance of high bandwidth
transfers and may lengthen the time spent serving the I/O
requests [4].

We observe that we need hints ahead of time, in order
to transition a device to a higher energy state before I/O
requests arrive. These hints are difficult to obtain at the
operating system level, so the need for a higher context of
execution is clear. Since users are responsible for the ma-
jority of I/O activity in interactive applications, the natural
approach is to observe user interactions and infer from in-
teractions when the increase in performance demand will ar-
rive. Therefore, in this paper, we propose several IAP mech-
anisms and explore in detail the monitoring and prediction
of user activity in order to improve prediction timeliness and
accuracy due to the added context of execution. The IAP
mechanisms continuously monitor user activity and predict
the need to transition the device to a higher power level in
time to meet the increased performance demand, as shown
in Figure 1.

3. INTERACTION-AWARE PREDICTION
The key assumption here is that there exists a strong cor-

relation between user interaction with the application and
resulting network activity. Further, this correlation can be
transparently exploited to manage the power states of wire-
less interfaces. Subsequently, we face several requirements:

• User interactions have to be captured transparently
without modification to the application.

• User interaction correlation and classifications should
be performed online without any user involvement.

• Capture and prediction have to be efficient to prevent
excessive energy consumed by the CPU to train and
generate predictions.

• The system has to be able to handle multiple applica-
tions in a graphically rich environment.

3.1 The Naïve Predictor
The observation that within interactive applications, net-

work activity is largely caused by the user’s interactions
leads us to a proposal of a simple mechanisms that switches
the WNIC to CAM for every mouse click. This approach
was previously explored for managing the power states of a
processor [16]. The intuition that motivates the näıve mech-
anism is that if the user invoked some I/O that followed a

mouse click it is probably important and should be served
with least amount of the delay. On the other hand, network
activity that is not correlated with, or immediately preceded
by, mouse clicks is probably less important and can incur
some delays without degrading the applications interactive
performance. Therefore, our näıve all-click (AC) switching
mechanism transitions the WNIC to CAM upon each click
and transmits all network I/O that follows the last mouse
click within some time interval in CAM, thereby minimizing
delays by already being in the high-power mode before I/O
arrives and serving data with higher throughput than was
measured for PSM. Network I/O that is not preceded by
mouse activity is served in PSM, saving energy. Once the
network I/O is served, the WNIC is transitioned to PSM to
conserve energy during idle periods.

Clearly, this mechanism has the effect of capturing and
serving all I/O activity periods preceded by clicks in CAM,
with the downside of transitioning the WNIC unnecessarily
for clicks that are not followed by network I/O. It is im-
portant to note that the total number of clicks may greatly
exceed the total number of I/O activity periods, since most
of the clicks do not invoke network I/O. In addition, even if
there is network activity following a click, it may be small
and best served in PSM without the overheads of transi-
tion to CAM. The energy consumed in CAM following each
switch, the energy required to make each switch, and the en-
ergy consumed during unnecessary switches make AC one of
the least energy efficient mechanisms. The AC mechanism
illustrates the need for more intelligent prediction schemes
that decide when the WNIC should stay in PSM or transi-
tion to CAM for the upcoming I/O activity period.

3.2 Capturing GUI interactions
To address the shortcomings of the näıve predictor, which

does not distinguish between different types of potential in-
teractions with the application, we propose a more sophisti-
cated Interaction-Aware Predictor (IAP) approach that uti-
lizes a detailed context of user interactions to accurately
predict WNIC transmission modes. Accurate and detailed
monitoring of user activity forms the basis for IAP’s design.
Virtually all interactions with common interactive applica-
tions in a GUI environment can be accomplished through
mouse clicks [6]. While the capture of mouse click data, such
as absolute screen coordinates of the event or type of click, is
relatively trivial, capturing application-specific context us-
ing mouse clicks is more problematic. In order to uniquely
identify the components of application GUIs that the user is
interacting with, we developed a monitoring layer between
the X Window Server and applications in Linux that uti-
lizes the GUI window structure to uniquely identify interac-
tive components such as buttons and menu selections with
an integer ID. Figure 2 shows the monitoring layer and the
kernel structure used to record interaction IDs. This layer
provides us with transparent user interaction monitoring,
meaning that no modification of applications is necessary.
Furthermore, all interaction IDs are obtained while the user
is interacting with the applications, allowing for detection,
correlation, and prediction to be performed without any of-
fline processing. High prediction accuracy is achieved by use
of the hierarchical trees of visible and non-visible windows
that fully describe an application’s GUI. The structure of
the window tree is the same across executions and is used
to uniquely identify a particular event.

373

Proc
Table

Mouse Display

X Server

X Monitor

App 1 App 2

WNIC

IAP Daemon

Kernel

Process Table
PID 1

Clicks Bytes Idle
PID 2

Clicks Bytes Idle

Figure 2: Design architecture.

3.3 Advanced Prediction
Accurate and detailed description of the user interactions

allows the IAP to distinguish between different types of
user interactions with an application that generate various
amounts of network I/O. The central part of the IAP is a
prediction table that is organized as a hash table indexed
by the unique click IDs. The prediction table stores a 2-bit
counter that indicates the most appropriate WNIC mode
for a given click ID. The table resides globally in the IAP
daemon and is shared among processes to allow table reuse
across multiple executions of the same application as well
as concurrent executions of the same application. The table
can be easily retained in the kernel across multiple execu-
tions of the application due to its small size [9, 8], and will
reduce training in future invocations of an application.

A prediction table lookup is performed for every click, as
shown in the Figure 3. The lookup results in three possible
outcomes: (1) the entry is found and the 2-bit saturating
counter indicates that the interaction leads to high levels
of network activity (best served in CAM), (2) the entry is
found and the 2-bit saturating counter indicates that the
interaction leads to low or no network activity (best served
by PSM), or (3) the entry is not found, in which case a
placeholder in the prediction table is created. Based on the
lookup outcome the IAP daemon switches the network inter-
face to the appropriate state. The IAP daemon continues to
monitor the network activity recording the number of bytes
transferred and the time of the I/O activity for each pro-
cess as shown in Figure 2. Arrival of a new click during the
monitoring indicates that there is a new interaction with the
application and the prediction table entry for the previous
click has to be updated. Detection of a longer idle period
indicates that the network activity initiated by the current
click ceased, the WNIC can be transitioned from CAM to
PSM and the prediction table entry for the given click can
be updated.

To update the 2-bit counter in the prediction table we rely
on the information about the given activity collected by the
IAP daemon and recorded in the process table as shown
in Figure 2. The IAP daemon calculates the relative time
and energy cost of transmitting the observed network I/O in
PSM and CAM relying on equations proposed in [3]. The
energy cost of each mode includes: (1) the WNIC energy to
transmit the data in a given mode, (2) energy consumed in
the idle state waiting for the end of the activity signaled by
the arrival of the click or detection of a longer idle period,
and (3) the energy consumption of the overall system, since

No

Wait for Click

Add to Table

Yes

No

I/O

Yes

No

Idle Yes

Get Prediction WNIC to CAM

WNIC in PSM

WNIC in PSM

Monitor Activity

Update Table

Event

Switch?

In CAM?

Found in
Table?

Click

Figure 3: IAP decision flowchart.

it has to remain on when the request is served. The time cost
of serving the observed activity in CAM includes the trans-
fer time and the time to transition the WNIC from PSM to
CAM. The time cost of serving the observed activity in PSM
includes the transfer and the initial latency of receiving data,
which is on average one-half of the beacon frequency. Trans-
fer time in PSM is higher than in CAM because throughput
is lower in PSM mode. Ignoring the switching latency, a
request served in CAM will always complete earlier than if
it were served in PSM.

The relative costs of time and energy for every predicted
I/O period can be weighted for emphasis on either timely
transitions or energy-efficient completion of the requests. In
our design, we consider a balanced approach of minimiz-
ing delays and energy for completing each activity period
to minimize the energy-delay2 product. The mode with the
lowest energy-delay2 product is selected as the best choice
for completing the request and the 2-bit counter in the cor-
responding prediction table entry is updated. We selected
the energy-delay2 to slightly emphasize the delay reduction
in interactive applications.

Finally, we observe that we need energy profiles of both
the WNIC and the system. In our case, we obtained the
respective profiles prior to our implementation, but we en-
vision that eventually, since energy management continues
to increase in importance, the devices themselves will pro-
vide energy profiles. In addition, we focused on the PSM
to CAM transitions above, leaving the CAM to PSM tran-
sition to a simple timeout, making it much easier to directly
compare all the proposed mechanisms with traditional and
state-of-the-art approaches.

3.4 Mode Switching Heuristics
There are two decisions that IAP has to make upon re-

trieving the prediction from the table. First, what to do
when there is no prediction for a given click. This occurs
during training and becomes less important as time passes
since there is only a limited number of ways the user can
interact with the application. The second decision is when
the prediction should be acted upon. IAP can immediately
switch to CAM, if predicted to do so, or delay the switch
till the network I/O arrives. Both of those questions trade
aggressiveness of prediction with higher reduction in delay

374

Prediction
policy

Switches
ahead
of I/O

Energy
sav-
ings

Delay
reduc-
tion

AC Switches to
CAM for each
click

Yes X XXXXX

IAPD Serves all I/O
in CAM un-
less predicted
to serve in
PSM

Yes XX XXXX

IAPE Serves all I/O
in PSM unless
predicted to
serve in CAM

Yes XXX XXX

IAPDW Same as IAPD No XXXX XX
IAPEW Same as IAPE No XXXXX X
IAPED Same as IAPE Dynamic XXXXX XX

Table 2: Summary of policies and qualitative com-
parison of efficiency.

for higher accuracy with the potential for higher energy sav-
ings. As a result, we evaluate several variations of the IAP
approach: IAP with Delay optimization (IAPD), IAPD with
deferred switching/Waiting to switch (IAPDW), IAP with
Energy optimization (IAPE), IAPE with deferred switch-
ing/Waiting to switch (IAPEW), and IAP optimizing the
Energy-Delay2 product (IAPED). The basic mechanisms for
context capture and prediction are shared across all heuris-
tics, but the actions taken upon prediction vary significantly
from one to the next. An overview of each mechanism is con-
tained in Table 2. Table 2 is a brief summary of switching
policies, stating when the switch occurs, and the relative
benefit for energy and delay reduction. Checkmarks in en-
ergy and delay savings columns compare the relative impact
on energy and delay for each of the proposed mechanisms.

3.4.1 IAPD & IAPDW: Minimizing Delays
The goal of IAPD and IAPDW mechanisms is the reduc-

tion of transmission delays by serving network I/O in CAM
by default and in PSM only when the prediction dictates to
do so. IAPD and IAPDW switch the WNIC to CAM for: (1)
mouse click IDs that have not been seen before, (2) mouse
clicks for which IAPD is still training, (3) mouse clicks that
result in CAM prediction, and (4) any activity not preceded
by mouse clicks. The main difference between IAPD and
IAPDW is that with IAPD transitions from PSM to CAM
occur immediately upon prediction from a given mouse click,
while IAPDW defers the same transition until network ac-
tivity arrives following the click. IAPD therefore has the
additional benefit of reducing switching delays. The WNIC
remains in PSM during idle periods and will remain in PSM
after a click when these mechanisms predict that the I/O
activity following the click is small and best served in PSM.

In the case of IAPD, delays are reduced at the cost of
higher energy consumption, since IAPD switches for all clicks
where prediction is uncertain. Both mechanisms incur ad-
ditional energy consumption due to switching for unpre-
dictable periods, which may be efficiently served in PSM.
Figure 4 illustrates the switching differences for IAPD and
IAPDW. In the example, IAPD switches the WNIC to CAM
when click with ID 1 is seen the first time, but remains in

AC

IAPD

User Interactions I/O requests

Time

Transitions CAM

Time

Time

IAPE

IAPEW

IAPDW

Time

Time

Time

ID1 ID1 ID2 ID2

Figure 4: Training and prediction example.

PSM when ID 1 is subsequently seen again, since it was
not previously followed by network I/O. When click with
ID 2 arrives, the mechanism transitions the WNIC to CAM
correctly, subsequently using the prediction to again transi-
tion the WNIC to CAM correctly when ID 2 is seen again.
IAPDW waits for the network I/O to arrive and does not
switch for clicks with ID 1 since they are not followed by
the I/O but switches for the network activity following the
click with ID 2. Furthermore, Figure 4 shows that IAPDW
slightly delays the network transmissions due to switching
delay.

3.4.2 IAPE & IAPEW: Maximizing Energy Savings
IAPE and IAPEW mechanisms differ from IAPD and

IAPDW in how the predictions are utilized in transition-
ing the WNIC power modes. Specifically, where IAPD and
IAPDW favor CAM for unpredicted or uncertain network
I/O, IAPE and IAPEW default to PSM unless the predic-
tion is that the upcoming network I/O is best served in
CAM. Therefore, IAPE and IAPEW eliminate unnecessary
transitions to CAM during unpredictable periods of low net-
work I/O traffic that can be served efficiently in PSM. The
resulting behavior maximizes energy savings at the cost of
higher delays. As in IAPD, IAPE transitions the WNIC
from PSM to CAM immediately upon prediction following
a mouse click in order to reduce switching delays. Similarly
to IAPDW and its relationship to IAPD, IAPEW is identical
to its counterpart, IAPE, but the predicted transition from
PSM to CAM is deferred until I/O activity arrives. IAPEW
reduces unnecessary switches due to erroneous predictions
and reduces the time WNIC is waiting in CAM for incoming
I/O, making it the most energy conscious predictor. How-
ever, this is done at the cost of introducing switching delays
for each predicted PSM to CAM transitions.

We use Figure 4 to further illustrate the differences be-
tween the proposed mechanisms. IAPE and IAPEW default

375

Application Trace MB MB I/O Act. # CAM # PSM Total Unique Correlated
Length Sent Recv. Periods Periods Periods Clicks Click IDs Click IDs

Firefox 37 hrs 43 692 3643 791 2852 3113 128 83
Thunderbird 20 hrs 407 434 632 185 447 2175 32 14

GFTP 12 hrs 339 2140 565 74 491 2992 34 18
Gaim 12 hrs 459 254 1085 137 948 2253 59 31
Pan 15 hrs 64 229 1302 46 1256 7316 50 20

DJGame 30 hrs 281 164 630 214 416 6189 41 13

Table 3: Application execution statistics.

to PSM when a prediction is lacking or uncertain. There-
fore, there are no switches for the click with ID 1 and the
first I/O period, since click with ID 2 has not been encoun-
tered previously. The next time ID 3 is seen, the prediction
to switch to CAM is made correctly. Additionally, IAPEW,
like IAPDW, does not immediately request that the WNIC
transition to CAM, but does so only when the first network
I/O is encountered following a prediction.

3.4.3 IAPED: Minimizing Energy-Delay2

The challenge of designing energy efficient predictors is
the balance between reducing delays and reducing energy
consumption, which can be accomplished by minimizing the
energy-delay2 product. A detailed evaluation of the mech-
anisms proposed in the previous sections found that IAPE
and IAPEW consistently performed better in this respect.
This implies that utilizing the CAM mode during training
and transmissions not preceded by mouse clicks is less sig-
nificant than minimizing delays and wrongful switches. As
a result, we propose an additional IAP that minimizes the
Energy-Delay2 (ED) product (IAPED). We selected IAPE
and IAPEW, the top performers in Figure 8, to design the
IAPED predictor that dynamically selects between the com-
bined predictors in an attempt to minimize the energy-delay2

product. Training and predictions are done according to the
diagram shown in Figure 3. The only additional step needed
is deciding if waiting for the I/O or switching ahead of time
is more beneficial for the energy-delay2 product, given the
activity period that has just ended. We use energy-delay2

calculations from each prediction mechanism and if switch-
ing ahead of time is more beneficial, an additional 4-bit sat-
urating counter is incremented for each click where this is
the case, otherwise it is decremented. Once the prediction to
switch to CAM is made, the IAPED consults the 4-bit sat-
urating counter for each click ID and decides if the switch
should occur immediately or when I/O activity arrives.

We decided to bias the saturating counter to IAPEW per-
formance during training, since, as it will be shown in sub-
sequent sections, IAPEW outperforms IAPE in terms of the
energy-delay2 product for all applications except Firefox. As
a result, the initial value of the saturating counter is set to
0 and will require two incorrect choices for each individual
mouse click ID before IAPED starts performing like IAPE
since this can potentially reduce the energy-delay2 improve-
ment for applications where IAPEW is the best performer.

4. METHODOLOGY
To accurately compare the various energy management

techniques for WNICs we use a trace-driven simulation. We
implemented: (1) standard power modes: PSM and CAM;
(2) interaction-aware mechanisms: AC, IAPD, IAPDW, IAPE,
IAPEW, and IAPED, (3) existing state-of-the art STPM

mechanisms, according to the authors’ specifications [4], (4)
optimal power management mechanism that minimizes the
energy-delay2 product based on future knowledge (OPT),
and (5) another reference predictor that switches the WNIC
to CAM for each network I/O period (AN). We use the AN
mechanism to show the other side of the spectrum where
all I/O is served in CAM to minimize transmission delays.
This mechanism is similar to the hardware PSM to CAM
switching mechanism that switches the card to CAM if there
is more than one packet waiting at the network interface.
Through experimentation, we have found that an timeout
of 4 seconds used to delay the transition of the WNIC from
CAM to PSM results in the best energy-delay2 product for
studied mechanisms.

Application traces are composed of two components: the
mouse event trace, and the network activity trace. Mouse
events are traced using the X monitoring layer. The trace
includes the mouse interaction type, a timestamp, and the
unique ID that identifies the component with which the user
has interacted. Network activity traces are collected using
a modified strace that captures the system call information
from send and recv interfaces, such as type of request, times-
tamp, bytes send, and bytes received. The simulator relies
on timestamps from each trace to order the incoming events.

We use six applications commonly executed on desktop or
portable systems:

• Firefox is a widely used web browser and represents
the behavior of users surfing the web, reading news
articles or downloading files among other activities.
Browsing web pages generally results in a low net-
work activity while downloading files will generate high
bandwidth demand. Some page browsing activities
may invoke external plug-ins to access media content
within a page such as flash animations or movies that
also may require high bandwidth.

• Thunderbird is an example of a mail application where
users interact with the application to perform tasks
such as sending, receiving, reading and composing email
messages. These interactions generate varying amounts
of network traffic due to sending or receiving emails
with or without attachments. Transferring attachments
will usually require much higher bandwidth than trans-
ferring a plain text messages.

• Gaim is an Internet messaging application. It gen-
erates low bandwidth network traffic when users are
sending text messages, while occasional file transfers
performed by users require high bandwidth.

• GFTP is a file transfer client used to upload and down-
load files between the client and a server. The traf-
fic consists of low overhead directory listings and high
overhead file transfers.

• Pan is a newsreader application, where user interac-

376

AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED
 AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED
 AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED
 AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED
 AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED
 AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED

Correct MissOpp Insufficient Unnecessary

Firefox Thunderbird GFTP Gaim Pan DJGame

150%

100%

50%

0%
100%

50%

0%

Ac
cu

ra
cy

Figure 5: Normalized prediction accuracy.

tions result in low network traffic generated by con-
necting to a news server, getting lists of groups and
message headers, getting messages, and posting mes-
sages.

• DJGame is an interactive online game that initiates
network activity for each action within the game, with
some actions leading to the transfer of information re-
garding user actions and others leading to the larger
transfers of game-state related information.

Trace details such as trace duration, the amount of data
transferred, and the number of network I/O activity pe-
riods representing opportunities for switching the WNIC
power mode are included in Table 3. Also included are the
numbers of user interactions, represented by mouse clicks.
Unique click IDs serve as a measure of GUI complexity for
each application. Applications with relatively simple static
GUIs, such as Thunderbird or GFTP, have few unique click
IDs, while those with rich interfaces have a somewhat higher
number of unique IDs. Correlated click IDs are a subset of
unique click IDs that belong to clicks that precede network
activity and can be correlation to the network I/O.

5. EVALUATION
We evaluate the efficacy of our proposed mechanisms along

several dimensions. First, we consider the prediction perfor-
mance of the proposed predictors. Second, we compare the
delay and energy consumption of all mechanisms to identify
the various sources of performance degradation and energy
consumption. Third, we consider the relative energy-delay2

performance of each mechanism, which shows a combined
view of predictor efficacy. Finally, we compare the over-
heads of IAP mechanisms and the state-of-the-art STPM
mechanism.

5.1 Accuracy
Figure 5 shows a breakdown of prediction outcomes for

the studied mechanisms and combines two related metrics:
one for the correct CAM periods and the other for wrong
switches, both normalized to AN. The Correct portion of
the bar represents the number of correctly predicted CAM
periods, while Missed Opportunity represents the number of

CAM periods that were missed by the predictor and were
subsequently served in PSM. Incorrect switches are divided
into Inefficient and Unnecessary switches. The Unnecessary
switches occur when the WNIC was switched to CAM upon
a prediction but the WNIC did not serve any I/O and the
card was transitioned back to PSM. Unnecessary switches
waste energy without providing any benefit in reducing de-
lays. Inefficient switches, on the other hand, occur when the
WNIC switches to CAM and serves some I/O but the I/O
activity is insufficient to justify serving it in CAM. Ineffi-
cient switches are less energy efficient but reduce some de-
lays by serving I/O in CAM. Therefore, they are less damag-
ing to the resulting energy-delay2 product than Unnecessary
switches. We use AN as the base for Figure 5 since it shows
maximum potential for serving I/O periods in CAM and also
the maximum amount of network I/Os that can be served
incorrectly in CAM if more sophisticated prediction mech-
anisms are not employed. We use the term coverage here
to indicate the percentage of the correcly predicted CAM
periods to the total CAM periods.

As shown in Figure 5, AC covers 87% of CAM periods
on average, with the best case being 95% in GFTP. CAM
period coverage is on average 77% for IAPD and IAPDW;
and 74% for IAPE and IAPEW. There is no difference in the
converges for the IAPDW and IAPEW as compared to their
base cases since the prediction are the same, only the timing
of switching is different. The average improvement of wrong-
ful switches for IAP mechanisms over AN is on average 77%
for IAPD, 79% for IAPE, 82% for IAPDW, 84% for IAPEW,
and 82% for IAPED. The lower wrong switches in IAPDW
and IAPEW mechanism are due to delaying switches after
prediction. Slightly higher coverages for IAPD mechanisms
are due to handling network I/O in CAM during initial train-
ing of the predicate when the mouse clicks are observed for
the first time.

The näıve AC mechanism switches for all clicks but does
not switch for the I/O not preceded by click. Switching for
all clicks explains the higher coverage in Firefox, GFTP, and
Pan, at a cost of much higher incorrect switches. I/O peri-
ods that were not immediately preceded by clicks are served
in PSM, since according to the intuition behind AC design
they are not latency sensitive. This explains slightly lower

377

PSM
O

PT
STPM
AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED
 PSM
O

PT
STPM
AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED
 PSM
O

PT
STPM
AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED
 PSM
O

PT
STPM
AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED
 PSM
O

PT
STPM
AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED
 PSM
O

PT
STPM
AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Transfer Delay Beacon Delay Switch Delay

Firefox Thunderbird GFTP Gaim Pan DJGame

De
la

y
No

rm
al

ize
d

to
 P

SM

PSM
O

PT
STPM
AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED
 PSM
O

PT
STPM
AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED
 PSM
O

PT
STPM
AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED
 PSM
O

PT
STPM
AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED
 PSM
O

PT
STPM
AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED
 PSM
O

PT
STPM
AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Transfer Delay Beacon Delay Switch Delay

Firefox Thunderbird GFTP Gaim Pan DJGame

De
la

y
No

rm
al

ize
d

to
 P

SM

PSM
O

PT
STPM
AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED
 PSM
O

PT
STPM
AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED
 PSM
O

PT
STPM
AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED
 PSM
O

PT
STPM
AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED
 PSM
O

PT
STPM
AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED
 PSM
O

PT
STPM
AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Transfer Delay Beacon Delay Switch Delay

Firefox Thunderbird GFTP Gaim Pan DJGame

De
la

y
(N

or
m

al
ize

d
to

 P
SM

)

Figure 6: Details of delays incurred by predictors.

coverage in case of Gaim and DJGame for AC. The peri-
ods that are not immediately preceded by clicks are found
in Thunderbird, Gaim and DJGame and are due to delays
generated by the server providing the data. Those delays
can result in the fragmentation of long network I/O periods
into several smaller network I/O periods. This delay results
in the CAM to PSM transition timeout to expire and AC
serves the remaining network I/O in PSM. IAP mechanisms
generate persistent predictions that will serve any I/O in
the last predicted state until a new prediction is generated
at the next mouse click. In this way, fragmented periods
are served in a correct WNIC mode, albeit incurring a small
amount of switching delay for each switch occurring at the
arrival of a new I/O period fragment, if predicted mode of
the WNIC is CAM. This policy is responsible for better cov-
erage by IAP mechanisms by an average of 6% in Gaim and
5% in DJGame.

Lower coverages in Firefox, GFTP and Pan are due to
variability in transfers following certain mouse clicks. Those
applications are dominated by the PSM periods where most
interactions are efficiently handled in PSM. We observe that
IAP mechanisms are able to correctly handle PSM periods
by having very small fraction of periods that should be han-
dled in PSM but are instead handled in CAM. Occasional
interactions that usually result in low bandwidth demand
may require higher bandwidth to accomplish, resulting in
the predictors missing an occasional CAM switch. Those
scenarios are observed in Firefox where fetching pages usu-
ally requires low bandwidth, while some pages contain rich
graphical content with high resolution graphics occasionally
requiring higher bandwidth to load them. Similarly, GFTP
requires high bandwidth for file transfers and usually low
bandwidth for retrieving directory listings. However, some
large directories will require higher bandwidth to transmit
a very long list of file names with corresponding informa-
tion. Finally, Pan retrieves a majority of messages without
any attachments, generally requiring low bandwidth that is
accurately handled in PSM. Occasional downloads of the
message with an attachment will result in lower coverage for
the CAM periods.

The goal of the IAP design is to handle I/O periods ac-

curately to minimize energy-delay2 product. Much higher
accuracy is achieved at the cost of reduced CAM coverage,
but the ultimate benefit to reduction of energy-delay2 prod-
uct is achieved. This is illustrated in case of AN and AC
with both mechanisms having higher coverage of CAM pe-
riods than IAP mechanisms. However, both AN and AC
mechanism are plagued by incorrect handling of PSM pe-
riods, where IAP mechanisms on average improve wrongful
switches by 80%.

5.2 Delay
Figure 6 breaks down the various delays incurred by each

mechanism. The three types of delay shown are Transfer,
Beacon, and Switch delay. Since CAM incurs minimum de-
lays, the delay of each mechanism is computed relative to
CAM. Transfer delay occurs whenever data is served in PSM
and is due to the lower throughput rates of PSM. Beacon
delays are caused by the delays that occur due to the WNIC
downtime between transmitting beacon frames, where serv-
ing data following a beacon is delayed by the time remaining
before the next beacon arrives. Switch delay is the delay in-
curred by transitioning the WNIC power modes and is equal
to the time to transition the card from PSM to CAM or vice
versa. All results are normalized to the PSM delay, showing
the deficiencies of the existing hardware mechanisms.

The delay that results in maximum energy efficiency is
show by the energy-delay2 optimal mechanism, shown as
OPT in Figure 6. OPT does not have any switching de-
lay since it transitions the WNIC to CAM prior to the ar-
rival of I/O activity. The delay incurred by OPT is mainly
due to serving periods in PSM, that minimize energy-delay2

product. Similarly to OPT, AC eliminates switching de-
lay by switching upon a mouse click, ahead of network I/O.
However, lower than optimal transfer delay indicate that
AC sacrifices energy efficiency at the cost of lower delay.
AN eliminates transfer delay altogether since it is serving
all I/O in CAM. However, it switches from PSM to CAM
when I/O arrives, encountering switching delays for the I/O
periods that could be served more efficiently in PSM with-
out a switch. Delays, due to the decision-making process in
STPM, result in the network interface serving more I/O in
PSM, encountering transmission delays even for the periods

378

PSM
O

PT
STPM
AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED
 PSM
O

PT
STPM
AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED
 PSM
O

PT
STPM
AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED
 PSM
O

PT
STPM
AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED
 PSM
O

PT
STPM
AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED
 PSM
O

PT
STPM
AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED

0.0

0.5

1.0

1.5

2.0

2.5
Transfer PSM Idle Switching CAM Idle

Firefox Thunderbird GFTP Gaim Pan DJGame

En
er

gy
 (N

or
m

al
ize

d
to

 P
SM

)
4.1 2.5

Figure 7: Detailed breakdown of energy consumption results.

that are later switched to be served in CAM. Regardless,
STPM improves delay by 59% with respect to PSM. On av-
erage IAP mechanisms further improve delay over PSM by
71% for IAPD, 69% for IAPE, 62% for IAPDW, 61% for
IAPEW, and 63% for IAPED. It is important to note that
the optimization of energy-delay2 product by each succes-
sive variation of the IAP mechanisms results in increasing
delay as this is the cost of reducing the energy consumed by
incorrect or early switches. IAPED shows the result of the
interplay of the two mechanisms that have been combined.

The IAPDW and IAPEW mechanisms were proposed to
reduce the energy consumed by unnecessary switches and
also reduce the time spent in CAM waiting for the I/O to
arrive. Therefore, the only difference for those mechanisms
is visible in switching delay, since both IAPDW and IAPEW
wait for the I/O to arrive before switching the WNIC mode.
Firefox shows a significant difference in delay between IAPD
and IAPDW, as well as between IAPE and IAPEW, that is
driven by switching delay. Switching the WNIC to CAM
when the prediction is made, as in the case of IAPD and
IAPE, results in a lower switching delay in situations where
the transition prior to network activity does not time out be-
fore I/O arrives. The switching delay that is present in the
case of IAPD and IAPE is due to persistent predictions tran-
sitioning the WNIC to CAM once I/O activity arrives after
the idle time threshold and the card is switched again from
PSM to CAM. For example, the deferred switches comprise
about 16% of all switches in Firefox for IAPD and IAPE.

Finally, variations in transfer, switching, and beacon de-
lays across the applications are due to the composition of an
application’s I/O activity. Applications with a large amount
of low bandwidth activity will incur higher transmission de-
lays as compared to CAM, since those periods are more effi-
ciently served in PSM. The same applications will also incur
beaconing delays due to the PSM mode. The example of
this behavior in Figure 6 is Pan with 96% of all periods
that are best served in PSM. Applications with relatively
high number of CAM periods or activity that is hard to
predict may incur a higher fraction of switching delay, with
Firefox serving as an example.

5.3 Energy
Energy consumption in Figure 7 is divided into four com-

ponents: PSM idle, CAM idle, switching, and transfer en-
ergy. PSM idle energy is consumed by the WNIC when it is
in PSM and there is no I/O transfer occurring. It includes
energy consumed during beaconing as well as the base PSM
energy. CAM idle energy is the energy consumed when the
WNIC is in CAM but not transferring data. Switching en-
ergy is the energy consumed by the WNIC to make the tran-
sition from CAM to PSM and vice versa. Finally, transfer
energy is the energy consumed while transferring data, ei-
ther while in CAM or PSM. Similarly to Figure 6, all results
are normalized to the PSM energy consumption.

PSM on average consumes the least amount of energy,
at the cost of increased delays as shown in Figure 6. En-
ergy consumption below the optimal level again suggests
that the mechanism is not efficient when we consider the
energy-delay2 product. The most energy-hungry mecha-
nism is either AN or AC, depending on the application.
The behavior of AN and AC, shown in Figure 7, mirrors
their behavior in Figure 5, showing that the large number
of incorrect switches is responsible for the increased energy
consumption due to switching, and subsequently the energy
consumed waiting for the timeout to expire before switching
back to PSM. We can conclude that accuracy of the pre-
diction is critical to energy consumption. Higher switching
accuracy of STPM, which only switches when it encounters
network I/O with sufficiently high bandwidth demand, re-
sults in much better energy efficiency than the näıve AC and
AN mechanisms. Higher accuracy in IAP mechanisms also
translates to better energy efficiency. On average, STPM
consumes 9% more energy than OPT, IAPD 16%, IAPE
13%, IAPDW 4%, and IAPEW and IAPED only 3% more.

Energy consumption due to data transfers is similar across
mechanisms for a given application since all mechanisms
have to transfer the same amount of data and transfers in
CAM and PSM use approximately the same power, as shown
in Table 1. The largest difference is observed in GFTP,
which can be attributed to large transfers which when per-
formed in PSM take more time and as a result consume more
energy. This difference stands out most in GFTP since, on

379

PSM
STPM
AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED
 PSM
STPM
AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED
 PSM
STPM
AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED
 PSM
STPM
AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED
 PSM
STPM
AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED
 PSM
STPM
AN AC IAPD
IAPE
IAPDW
IAPEW
IAPED

1.0

1.2

1.4

1.6

1.8

2.0

Firefox Thunderbird GFTP Gaim Pan DJGame

En
er

gy
D

el
ay

^2
 P

ro
du

ct
3.1 2.4 2.4 2.9 2.5 2.7 2.1

Figure 8: Energy-delay2 product results.

OPT PSM STPM IAPED
Time (s) Energy (J) Time (s) Energy (J) Time (s) Energy (J) Time (s) Energy (J)

Firefox 2132 19655 3298 15470 2954 15932 2515 20352
Thunderbird 3068 7296 3930 6955 3428 6995 3226 7413

GFTP 7215 9215 10250 10954 7371 10959 7514 9321
Gaim 2856 5773 4522 5447 3021 6544 3027 6192
Pan 1104 4076 1313 3641 1128 5320 1251 4141

DJGame 1800 8524 3199 7342 1915 8759 1889 8373

Table 4: Energy and delay costs for selected mechanisms.

average 71% of energy consumed in GFTP was due to trans-
ferring large amounts of data, which is four times more than
the average of the remaining applications. The smallest en-
ergy consumption during transfers occurred in Firefox with
an average of 10% of total energy, while PSM idle makes up
the bulk of energy consumption at an average of 61%. As a
result, those differences in transfer delays are less prominent
in other applications.

The largest differences among energy management mech-
anism are visible in switching energy and CAM idle energy.
Every erroneous switch increases switching energy consump-
tion and idle CAM energy consumption while waiting for
I/O to arrive and idle timeout to expire. Furthermore, even
correct switches can contribute to idle energy consumption
in the case when they have to wait for I/O to arrive. IAPE
consumes less energy than IAPD, since it has fewer erro-
neous switches as shown in Figure 5. The energy consumed
while waiting for I/O to arrive is further reduced in IAPDW
and IAPEW since those mechanisms wait for I/O to arrive
before switching to CAM. The only energy consumed in idle
CAM state in IAPDW and IAPEW is due to timeout inter-
val after an I/O has been served and before the WNIC was
transitioned to PSM.

5.4 Energy-Delay2

The final metric in evaluating each of the energy man-
agement mechanisms is the energy-delay2 product. The
energy-delay2 product is an established metric that takes
into account both performance degradation and energy con-
sumption, with an emphasis on performance degradation,
due to the interactive applications’ requirements for low-
delay operation. Energy-delay2 provides a single metric and

therefore is useful for visualizing the tradeoff between en-
ergy consumption and performance. Figure 8 shows the
energy-delay2 product for each mechanism as normalized
to OPT. OPT energy-delay2 product is at 1 and the in-
creases in energy-delay2 product as compared to OPT are
above 1. To compute the energy-delay2 product, we con-
sider the total WNIC energy consumption for each of the
traced applications using each of the described mechanisms
and total transmission time, which includes all delays and
time to transmit data, but does not include the idling time,
which may vary according to user behavior. For additional
reference, we include Table 4, which shows the transmis-
sion time and energy, in seconds and Joules, respectively,
for OPT, PSM, STPM, and IAPED.

We observe that the IAPED mechanism outperforms AC
and AN by an average of 75% and 60%, respectively, and
is 11% lower than STPM. Of the IAP mechanisms, IAPD
and IAPE are generally the weaker performers, with an av-
erage energy-delay2 product that is 31% and 26% higher
than OPT, respectively, due to larger number of erroneous
switches and resulting higher energy consumption. The ex-
ception is Firefox where we see that the trend is reversed,
where IAPD and IAPE perform better than their energy-
optimizing counterparts do. Firefox overall exhibits a larger
amount of activity than the other applications. In this
case, the switching delay incurred by IAPEW and IAPDW
is largely eliminated by the early switching of IAPE and
IAPD. In Thunderbird and DJGame the pronounced dif-
ferences between IAPD and IAPDW, as well as IAPE and
IAPEW, are due to long delays between correlated transmis-
sions. While the energy consumed by IAPE is significantly
higher, by 17% over IAPEW, for example, the savings in

380

Apps. STPM IAPED
Firefox 22 .08

Thunderbird 8 .05
GFTP 3 .23
Gaim 3 .02
Pan 4 .02

DJGame 5 .03

Table 5: Mechanism overheads in seconds.

delay by IAPE are not significant due to a relatively small
number of total switches in these applications. Finally, Pan
is a PSM dominant application, therefore the performance
of IAP mechanisms is comparable to PSM.

5.5 Overheads
A large amount of computational or storage overhead can

reduce or eliminate the gains made by implementing energy
management for a single system component. For example,
high computational overhead results in more energy being
used by the CPU. This additional energy that is not nor-
mally consumed by the CPU can result in more energy being
consumed to run the predictor than is saved by the predic-
tor in the managed component. STPM is a relatively high
cost prediction mechanism, due to having to compute prob-
abilities for upcoming activity from histograms describing
prior activity. In our simulations, STPM is implemented
as described by its authors, including a 10-minute interval
between recomputation of probability lookup tables. The
update of probability tables used to determine the likeli-
hood of upcoming activity is a high-cost operation which,
when performed for each run, results in additional compu-
tational overhead without significantly benefiting the result-
ing mechanism accuracy. The overheads shown in Table 5
can be decreased for STPM at the cost of lower prediction
accuracy. We evaluate the computational overhead shown
in Table 5 by a timed execution of the simulation of each
mechanism as it evaluates the application traces. We find
that due to the predictions being made once for each mouse
event rather than once for each incoming I/O request, the
overheads for the IAPED mechanism are obviously lower.
Compared to STPM, the IAPED overhead is between 99%
and 98% less.

The computational overhead of all IAP mechanisms comes
from the computation of unique IDs used to index into the
prediction table. Firefox has the deepest tree of 27 levels
in the studied applications. We again setup an experiment
to measure the average overhead of traversing 27 level of
tree hierarchy that is present in Firefox. The overhead of
calculating the ID in this case is less than .8ms. Currently,
each mouse click results in a communication overhead as the
application window tree is built through use of X Server re-
quests, so this overhead can be reduced by use of persistent
tree representations of the application’s GUI. Furthermore,
ID calculations and subsequent prediction table lookup are
performed once per click, meaning that they need to be per-
formed as infrequently as the user interactions occur.

Finally, the storage overhead is relatively small in IAP
mechanisms. The IAP daemon has to maintain prediction
entries, which ranged from 32 in Thunderbird to 128 in Fire-
fox. Each table entry is composed of five fields containing
a single unsigned integer each. Therefore, in the worst case
Firefox requires 2.5KB to store 128 entries. A 6.8KB table
would suffice for storing all entries from every one of the six
applications we have traced. This relatively small overhead

can be further reduced, since only a small number of the en-
tries contain information about clicks that lead to network
I/O. As a result, we may consider aging the less useful entries
and removing them using a simple replacement mechanism
such as LRU.

6. RELATED WORK
To minimize energy consumption without sacrificing per-

formance, the network card should be switched immediately
to CAM when a high bandwidth transfer occurs and back
to PSM when the transfer is over, since PSM can cause un-
acceptable 16-32x slowdown for synchronous traffic [4]. The
drawbacks of the simple PSM scheme have been addressed
through prior work that aimed to modify the PSM protocols
in order to further improve the potential for energy savings.
One such project produced BSD [14], the bounded slowdown
protocol, for PSM. BSD improved on the static PSM proto-
col by dynamically adapting the length of the beacon period,
shortening it during active periods and lengthening, backing
off, during periods of inactivity. A further PSM beaconing
optimization was introduced with PSM-Dynamic [5], which
based the beaconing interval on recently observed RTT of
the active connections. The drawback is that dynamic bea-
coning requires that the hardware be able to support non-
static beaconing periods.

As a result, dynamic switching between PSM and CAM
have been explored in Self-Tuning Power Management [4]
(STPM). STPM explored the use of explicit application-
level hints and on-line modeling of application access pat-
terns to set network power management parameters. Ap-
plication controlled power management has been applied to
other devices and system components [7, 10, 17, 19] with a
high potential for reducing energy consumption. However,
this approach places the burden of inserting power manage-
ment directives on the programmers and requires modifica-
tion of existing applications before the energy saving poten-
tial can be realized. As a result, mechanisms for automatic
application-like hint generation have been proposed [9, 8].

Higher-level context can be leveraged to improve accu-
racy and timelines of predictors. The context may include
many aspects of the user environment, such as location, user
activity, and system-user interaction. One of the earliest ef-
forts in this area was the Lumiere Project [11]. Lumiere
served as the basis for Microsoft’s Office Assistant. The
Location Stack project [15] used location based contextual
hints to support a range of location-sensitive services. The
Location Stack focused on information retrieval and cus-
tomization. More recently, event-based mechanisms were
used for building environments that respond to users ac-
tivities [1]. Using ubiquitously deployed sensors, perceptual
systems in smart environments monitored user behavior and
issued hints about user’s activities that customized devices.
Layered hidden Markov models [18] were used to character-
ize states of a user’s activity based on streams of video, audio
and computer (keyboard and mouse) interactions. Finally,
statistical models were applied to capture user behavior and
correlate it to network activity [2]. This approach suffered
from complicated clustering that required offline processing.
Furthermore, clusters are only an approximation of user in-
terfaces and result in a high computational overhead due to
the retraining that occurs when the displayed window layout
or geometry changes.

381

7. CONCLUSION
This paper proposes a new direction for designing resource

management predictors. While current predictors monitor
low-level application behavior such as network activity or
sometimes reach as high as monitoring the application sys-
tems calls, we take the next step by monitoring the key
component responsible for the behavior of interactive appli-
cations, the user. We have proposed and successfully imple-
mented several user-interaction-aware energy management
mechanisms that dynamically learn the context of user in-
teractions with respect to network activity in interactive ap-
plications.

Other recent resource management solutions could poten-
tially perform better with hints from modified applications,
but for unmodified applications they rely on monitoring low-
level activity. Application modifications are impractical due
to the additional burden that is placed on programmers,
therefore our proposed mechanisms provide a transparent
solution that provides high energy efficiency without the
need for application modifications. More importantly, the
proposed mechanisms are readily implementable in existing
systems due to: (1) the simplicity of the proposed mecha-
nism which monitors and correlates user behavior with sys-
tem activity, (2) quantifiably low computational and storage
overheads, (3) online monitoring and prediction that does
not require application modification or offline processing for
the analysis of user interactions.

8. REFERENCES
[1] F. Albinali, P. Boddupalli, N. Davies, and A. Friday.

Correlating sensors and activities in an intelligent
environment: A logistic regression approach.
Proceedings of the First European Symposium on
Ambient Intelligence, 2875:318–333, 2003.

[2] F. Albinali and C. Gniady. Cpm: Context-aware
power management in wlans. In Eighteenth Innovative
Applications of Artificial Intelligence Conference
(IAAI), 2006.

[3] M. Anand, E. B. Nightingale, and J. Flinn. Self-tuning
wireless network power management. Proceedings of
the 9th annual international conference on Mobile
computing and networking (MobiCom ’03), pages
176–189, 2003.

[4] M. Anand, E. B. Nightingale, and J. Flinn. Self-tuning
wireless network power management. Wireless
Networks, 11(4):451–469, July 2005.

[5] Z. Anderson, S. Nath, and S. Seshan. Choosing beacon
period for improved response time for wireless http
clients. Proceedings of the Second International
Workshop on Mobility Management and Wireless
Access Protocols (MobiWac ’04), 2004.

[6] A. Dix, J. Finley, G. Abowd, and R. Beale.
Human-computer interaction (3rd ed.). Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 2003.

[7] C. S. Ellis. The Case for Higher-Level Power
Management. In Workshop on Hot Topics in
Operating Systems, pages 162–167, Rio Rico, AZ,
USA, March 1999.

[8] C. Gniady, A. R. Butt, and Y. C. Hu. Program
counter based pattern classification in buffer caching.
In Proceedings of the 6th Symposium on Operating
Systems Design and Implementation (OSDI),
December 2004.

[9] C. Gniady, Y. C. Hu, , and Y.-H. Lu. Program counter
based techniques for dynamic power management. In
Proceedings of the 6th Symposium on Operating
Systems Design and Implementation, Dec. 2004.

[10] T. Heath, E. Pinheiro, J. Hom, U. Kremer, and
R. Bianchini. Application transformations for energy
and performance-aware device management. In
Proceedings of the 11th International Conference on
Parallel Architectures and Compilation Techniques,
September 2002.

[11] E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and
K. Rommelse. The lumiere project: Bayesian user
modeling for inferring the goals and needs of software
users. the Fourteenth Conference on Uncertainty in
Artificial Intelligence, 1998.

[12] IEEE. 802.11 wireless standard. Online Technical
Standard Specification, 1999.
http://grouper.ieee.org/groups/802/11/.

[13] IEEE. Supplement to ieee standard for information
technology: Part 11: Wireless lan medium access
control (mac) and physical layer (phy) specifications.
Online Technical Standard Specification, 2001.
http://grouper.ieee.org/groups/802/11/.

[14] R. Krashinsky and H. Balakrishnan. Minimizing
energy for wireless web access with bounded
slowdown. Proceedings of the 8th annual international
conference on Mobile computing and networking
(MobiCom ’02), pages 119–130, 2002.

[15] A. LaMarca, J. Hightower, I. Smith, and S. Consolvo.
Self-mapping in 802.11 location systems. Proceedings
of the Seventh International Conference on Ubiquitous
Computing (Ubicomp 2005), pages 87–104, September
2005.

[16] J. R. Lorch and A. J. Smith. Using user interface
event information in dynamic voltage scaling
algorithms. Eleventh International Symposium on
Modeling, Analysis and Simulation of Computer
Telecommunication Systems, 00:46, 2003.

[17] Y.-H. Lu, G. D. Micheli, and L. Benini.
Requester-aware power reduction. In Proceedings of
the International Symposium on System Synthesis,
pages 18–24, 2000.

[18] N. Oliver, A. Garg, and E. Horvitz. Layered
representations for learning and inferring office
activity from multiple sensory channels. Computer
Vision and Image Understanding, 96(2):163–180, 2004.

[19] A. Weissel, B. Beutel, and F. Bellosa. Cooperative
I/O—a novel I/O semantics for energy-aware
applications. In Proceedings of the Fifth Symposium on
Operating System Design and Implementation,
December 2002.

382

