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Abstract

Energy efficiency has become one of the most important
factors in the development of computer systems. As ap-
plications become more data centric and put more pres-
sure on the memory subsystem, managing energy con-
sumption of main memory is becoming critical. There-
fore, it is critical to take advantage of all memory idle
times by placing memory in low power modes even
during the active process execution. However, cur-
rent solutions only offer energy optimizations on a per-
process basis and are unable to take advantage of mem-
ory idle times when the process is executing. To al-
low accurate and fine-grained memory management dur-
ing the process execution, we propose Interaction-Aware
Memory Energy Management (IAMEM). IAMEM re-
lies on accurate correlation of user-initiated tasks with
the demand placed on the memory subsystem to accu-
rately predict power state transitions for maximal energy
savings while minimizing the impact on performance.
Through detailed trace-driven simulation, we show that
IAMEM reduces the memory energy consumption by
as much as 16% as compared to the state-of-the-art ap-
proaches, while maintaining the user-perceivable perfor-
mance comparable to the system without any energy op-
timizations.

1 Introduction

Modern computer systems ranging from netbooks to
server clusters are relying on large system memory to
provide high performance for data intensive applications.
While a computer system contains many energy hungry
components, the energy consumption of main memory is
becoming more significant and can surpass energy con-
sumption of other components. For example, as much as
40% of the total system energy is consumed by the mem-
ory subsystem in a mid-range IBM eServer machine [14].
The demand for higher memory capacity is not limited to
data servers. Even portable computers are experiencing
a rapid growth in memory capacity to accommodate user
demand for higher processing capability and richer mul-

timedia experiences. As a result, current portable sys-
tems, e.g. notebooks, are commonly sold with 8GB of
main memory or more, and ultraportable systems such
as netbooks with 4GB.

Energy optimization of the memory subsystem is be-
ing addressed at both hardware and software levels. At
the hardware level, energy efficiency is primarily gained
through advances in manufacturing processes to create
denser modules and lower per-bit energy consumption.
In addition, low-power states are also added to the mod-
ern SDRAM and are exposed to the system software,
enabling OS-driven energy management. While energy
management that utilizes multiple power states can be
implemented in hardware, it is usually delegated to the
operating system. The operating system has a detailed
view of the running applications and the demand they
place on the system, and therefore, allows for more so-
phisticated energy management. While the additional
context available at the OS level provides better energy
management possibilities, the task of designing an effi-
cient energy management technique is not easy due to the
long power-state transition delays that can be exposed to
the application execution.

Performance and the overall energy efficiency may
suffer if the overheads of power state transitions are not
addressed properly, since the entire system has to stay
on longer and consume additional energy. In addition,
the user may even be irritated to the extent that he or
she completely disables the energy management mech-
anisms. Fortunately, maximal memory performance is
usually not necessary to meet the user’s performance ex-
pectations. For example, CPU or I/O bound tasks in
interactive applications may not be noticeably degraded
when the memory is operating in a low-power state. Fur-
thermore, the perceived performance of real-time appli-
cations such as video players, games, or teleconferenc-
ing may not be affected by the power state transitions,
as long as the system maintains perceptual continuity
for the user. Therefore, it is critical to distinguish the
memory-intensive tasks that may expose transition de-
lays to the users from the tasks with low memory ac-
tivity. Subsequently, the former tasks must be executed
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with high memory performance, while the latter can be
executed with lower performance to improve energy ef-
ficiency.

To take advantage of these opportunities, we pro-
pose Interaction-Aware Memory Energy Management
(IAMEM), a highly accurate and transparent mechanism
for memory energy management in interactive systems.
Compared to the existing mechanisms: (1) IAMEM pro-
vides energy optimizations within the running process
that the user is interacting with as well as all other pro-
cesses in the system, as compared to previous approaches
that only improved energy efficiency of memory oc-
cupied by processes waiting for execution [8, 13]; (2)
IAMEM is a unified approach that addresses energy ef-
ficiency of both the buffer cache and the virtual mem-
ory, while previous approaches only proposed individ-
ual solutions for either the buffer cache or the virtual
memory [2, 8, 13]. Subsequently, we make the follow-
ing contributions in this paper: (1) identify and quan-
tify the memory behavior of common interactive appli-
cations and show large opportunity for improvement; (2)
utilize high-resolution context of user interactions to ac-
curately predict memory demand for tasks initiated by
the user; (3) propose IAMEM, a unified energy man-
agement mechanism for the entire memory subsystem;
(4) compare IAMEM with the existing state-of-the-art
mechanisms through a detailed study.

2 Motivation

Current trends in providing larger on chip CPU caches
result in main memory seeing fewer accesses from the
CPU, which creates longer memory idle times. Subse-
quently, the majority of memory energy is consumed in
the idle state. Energy consumption of main memory can
be significantly reduced by transitioning memory devices
to a low-power state during the idle periods. However,
accessing memory in a low-power state incurs high tran-
sition latency, and as a result, degrades the system per-
formance and may increase the overall energy consump-
tion. Therefore, it is crucial to ensure that the associated
performance degradation can be hidden behind the appli-
cation execution and not exposed to users.

A simple way to provide memory energy manage-
ment is to keep the memory devices occupied by cur-
rently running process in a high-power state and power
down all other memory devices. This per-process en-
ergy management is employed by Power-Aware Virtual
Memory (PAVM) [8]. In this approach, the memory de-
vices used by the newly scheduled process are powered
up to provide high performance for the running process,
during the context switch, while the other memory de-
vices occupied by non-executing processes are kept in a
low-power state to save energy. While this per-process
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Figure 1: Distribution of tasks with memory in high
and low power states. Shaded bar represents the frac-
tion of short tasks extended over 50ms, while shaded-
crossed bar represents the fraction of long tasks extended
by more than 50ms.

approach provides significant benefits for a multitask-
ing environment, it fails to address the energy consump-
tion within a single process. Furthermore, current multi-
core CPUs with hyper-threading support can have tens
of processes concurrently executing and accessing a wide
range of memory addresses, rendering PAVM ineffective.
To improve energy efficiency in such scenarios, we need
a finer-granularity and more aggressive energy manage-
ment that is able to reduce energy consumption within a
single process during the process execution.

2.1 Per-Task Energy Management

Fortunately, the full performance is usually not needed
in interactive applications, since users are unable to
perceive certain amount of short delays. We can ex-
ploit that observation in designing more aggressive en-
ergy management mechanisms. Prior studies in human-
computer interaction have established the human percep-
tion threshold to be between 50-100ms, indicating that
events with durations falling within this threshold are not
perceived by the user [23]. Completing task execution
earlier than the perception threshold is meaningless since
the user will not notice this amount of time and cannot
initiate tasks any faster. Therefore, any task shorter than
the perception threshold can be potentially executed at a
lower performance level, so that its execution time can be
stretched up to, but not beyond the perception threshold.
The resulting lower power consumption can improve en-
ergy efficiency while the user’s behavior is unaffected.

To account for all possible users and prevent any po-
tential performance degradation, we assume the lower
bound of 50ms as the perception threshold for all users.
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In the remainder of this paper, we refer to any task fin-
ishing within 50ms as a short task and any task running
longer than 50ms as a long task. A short task appears
instantaneous to the user even if extended up to 50ms. A
long task, however, is perceivable to the user even at the
highest performance level. Since the user would not be
able to perceive the time difference within 50ms, a long
task can be safely prolonged by up to 50ms, assuring that
the user’s think flow is not interrupted and the subsequent
behavior is not affected [3, 20]. To take advantage of the
allowed delays in interactive applications, we can poten-
tially put the entire memory subsystem into a low-power
state between memory operations and power it up upon
a memory access request. The transition latency due to
this on-demand power up may slow down a single mem-
ory access; nevertheless, from the task perspective, the
user may not notice the aggregated delays, as long as the
scaled task does not exceed the user’s perception thresh-
old as discussed above.

Figure 1 examines the scenario of keeping memory
in a low-power state (Low) between accesses for sev-
eral interactive applications and compares it to the stan-
dard system that keeps memory in a high-power state
(High). These interactive applications are described in
detail in Section 4 of this paper. The tasks from each ap-
plication are further classified into short tasks and long
tasks. Keeping memory in the low-power state can ex-
tend task execution beyond the user’s perception thresh-
old, as shown in Figure 1 by shaded area in each cate-
gory. We observe that 93% of short tasks and 58% of
long tasks stay within the user’s perception tolerance.
The longer tasks suffer more since they perform more
memory operations and as a result, expose more tran-
sition delays. At this point, we can draw two signifi-
cant observations: (1) there is a tremendous opportunity
to save energy within a running application by keeping
memory in a low-power state; and (2) some tasks have to
be executed with memory in the high performance state,
otherwise the degradation would be noticed by the user.
The observations justify the need for an intelligent mech-
anism that is able to accurately identify memory inten-
sive tasks from the majority of low-demand tasks that
can be executed at low memory performance.

The majority of tasks in interactive environments are
initiated directly by users and the performance demand
within an application exhibits a strong correlation to User
Interactions (UIs) with the application [1, 4]. In this pa-
per, we will leverage the high-resolution context of user
interactions to categorize UI-triggered tasks and corre-
late their memory behavior with the user interactions. By
utilizing this correlation, the proposed mechanisms will
select the best memory power states to match the tasks’
performance demand.
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Figure 2: Power specifications for a rank consisting of 8
Micron 1Gbit DDR3-1066 devices.

2.2 Memory Power States

Synchronous Dynamic RAM (SDRAM) is widely used
in computers as main memory in the form of Double-
Data-Rate (DDR), followed by DDR2 and DDR3. We
focus on DDR3 DRAM in this paper since it is the main-
stream DRAM architecture in today’s computer systems.
DDR3 SDRAM is packaged into a DRAM module that
commonly consists of two DRAM ranks. The small-
est power management unit in DDR3 is the rank and
all devices in one rank are operating at the same power
state [18]. Each rank in a DRAM module can oper-
ate in several different power states: (1) Active Standby
state (ACT STBY): the state where memory can read or
write data without any delay; (2) Active Power Down
state (ACT PDN): the power down state that offers some
energy savings while minimizing transition delays; (3)
Precharge Standby state (PRE STBY): the intermediate
state for transitioning to a much lower energy states; (4)
Precharge Power Down Fast (PRE FAST): the fast power
down state where DLL’s are still locked; (5) Precharge
Power Down Slow (PRE SLOW): the slow power down
state where DLL’s are not locked anymore; In both
PRE FAST and PRE SLOW states several subcompo-
nents of a rank are disabled to reduce power, such as I/O
buffers, sense amplifier, row/column decoder, etc.; And
finally (6) Self Refresh state (SELF REF): in addition to
previous states, the external clock and on-die termination
are disabled to reduce power consumption even further.

Figure 2 illustrates the power specifications for a
DDR3-1066 rank [19, 17], including the power con-
sumption, the power state transition, and the asso-
ciated resynchronization latency. Memory I/Os can
only be performed with memory in a high-power state
(ACT STBY); therefore, the rank in low-power states
(ACT PDN, PRE STBY, PRE FAST, PRE SLOW or

3
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Figure 3: Architecture of Core i CPU.

SELF REF) has to be transitioned to ACT STBY state
before performing any I/O, potentially exposing a high
resynchronization delay to the application. Large num-
ber of resynchronizations may cause overall delays long
enough to become perceptible to the user and degrade
the performance. Therefore, it is critical to control the
amount of power state transitions per UI-triggered task.

2.3 Hardware Support

Energy management at the operating system level re-
quires support from hardware to control memory power
states and monitor system behavior in detail. Figure 3
shows Intel’s most recent Core i CPU with integrated
memory controller for low-overhead power state man-
agement and monitoring. In addition, the Core i CPU
provides a mechanism called Dynamic Memory Rank
Power Down to power down memory ranks automati-
cally after a specified memory idle time has elapsed [11].
Subsequently, the operating system only needs to set up
the associated register with the desired timeout value to
enable this feature. The integrated memory controller
will then perform the power state transitions automati-
cally, after the preset timeout expires.

Detailed system monitoring is further provided by the
Core i CPU through a set of registers called performance
counters, which are crucial for monitoring memory ac-
cesses. Under normal operations, virtual memory ac-
cesses are invisible to the operating system, while only
occasional page faults results in OS being invoked. Per-
formance counters, however, enable the OS to monitor
memory activity when applications are performing mem-
ory I/Os, such as the number of CPU cache misses that

result in main memory accesses. However, exact timing
of each memory request, that would allow us to deter-
mine memory access burstiness, is not available.

3 IAMEM Design

Observing that there exists a strong correlation between
user interactions and the required performance, we pro-
pose Interaction-Aware Memory Energy Management
for entire memory space in interactive systems. IAMEM
will transparently exploit UI events to speculate about the
desired performance, and dynamically manage the mem-
ory power states to meet the task demand. Subsequently,
we will discuss the following components in this section:
(1) Unified energy management mechanisms that address
all types of accesses to physical memory; (2) High-detail
and low-overhead monitoring and detection of tasks trig-
gered by user interactions; (3) Accurate classification
and correlation of tasks and the associated processing de-
mand; (4) Online training and prediction for determining
the desired memory power for upcoming tasks; and (5)
Optimizations to prevent perceivable performance degra-
dation.

3.1 Memory Space
Physical memory in modern operating systems is divided
into three categories: (1) kernel space that is strictly
reserved for the OS kernel, its data structures, device
drivers, etc.; (2) the buffer cache for caching previously
accessed disk blocks to improve the file system perfor-
mance; and (3) user space that is allocated as Virtual
Memory (VM) for user processes. The majority of mem-
ory space is dynamically allocated to the buffer cache
and virtual memory of running processes, based on the
current demand for each type of memory.

Memory ranks used for the buffer cache can be ef-
ficiently managed in server environments by hiding
power-state transition overheads behind the kernel pro-
cessing time [2]. While the mechanism worked well in
server workloads where the buffer cache occupies large
space spanning several ranks, it has limited applicability
for interactive applications where the buffer cache occu-
pies smaller space and usually shares the rank with the
kernel data structures. Subsequently, upon a first ker-
nel memory access, the rank is powered up making large
portion of the buffer cache accessible without further de-
lays. Even if the buffer cache occupies several ranks,
interactive applications, in general, put lesser pressure
on the buffer cache than server applications, such that
only a small fraction of overall accesses may require
powering up additional ranks. Therefore, we consider
memory space occupied by the kernel data structures and
the buffer cache as a single kernel memory space and

4
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do not distinguish them further. Subsequently, we pro-
pose unified energy management mechanisms that man-
age all memory spaces based on user interaction patterns
to guarantee user-perceivable performance while maxi-
mizing energy savings.

3.2 UI and Task Monitoring
X Window Server manages interactions with client ap-
plications in Linux GUI environment. UI elements are
contained in windows organized in a window tree associ-
ated with the application. IAMEM relies on a monitoring
layer (X Monitor) between the X Server and client appli-
cations to uniquely identify individual UI elements [4],
as shown in Figure 4. Both keystrokes and mouse inter-
actions with the application are monitored. The unique
ID of a given UI element is generated from the element’s
position within its containing window and that window’s
position within the window tree. Subsequent interactions
with a particular UI element generate the same interac-
tion ID, and the same categorization for the task to fol-
low. The operation of the UI capture mechanism is en-
tirely transparent to the user and does not require any
modification to the applications.

Every user interaction results in a task that requires
a certain amount of processing to accomplish the goal.
The task can be short, such as keystroke capture and dis-
play on the screen, or long that involves large amounts of
CPU activity, memory I/Os, and even other device I/Os.
To reduce the overhead of task detection, IAMEM as-
sumes that a task completes as soon as the OS idle pro-
cess (swapper process in Linux) begins running and the
task is not blocked by I/O, or when the application re-
ceives a new UI event [1, 16]. IAMEM uses the Time
Stamp Counter to accurately measure the CPU cycles
taken to process the task in user and kernel mode, which
also include cycles for memory accesses. In addition,
IAMEM uses the performance counter to measure the
number of accesses to main memory, during task exe-
cution, by counting the number of misses in the last level
CPU cache.

3.3 UI and Task Correlation
IAMEM classifies tasks by the individual interaction IDs
of the triggering UI events. To predict the memory power
demand for each task category, IAMEM utilizes a pre-
diction table implemented as a hash table indexed by
the interaction IDs. Once the completion of a task is
detected, an α aged average method is used to update
and record the task processing demand described by the
execution time and the number of memory references.
The α aged average method captures past behavior of
the interaction and also allows quicker adaptation to new
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Figure 4: IAMEM design architecture.

behavior patterns, if the memory behavior of the inter-
action changes. Figure 4 illustrates the prediction table
with the following variables for each interaction ID: (1)
a weighted sum of all previous tasks’ computation time
Time; (2) a weighted sum of all previous tasks’ mem-
ory references MemoryRe f s; and (3) a weighted count
of all observed task instances Count. For the most recent
task with computation time T and memory references M,
those three table variables are updated as follows with a
predefined weight α (α <= 1):

Time = α ∗Time+T (1)

MemoryRe f s = α ∗MemoryRe f s+M (2)

Count = α ∗Count +1 (3)

Note that T is recorded as the actual computation time
with memory in the active state. When memory tran-
sitions occur, the time spent in power state transitions
should be deducted from the actually monitored time.

3.4 Power State Prediction
Each time a UI event occurs, IAMEM performs a ta-
ble lookup using the captured interaction ID. It first pre-
dicts the incoming task’s processing demand as the av-
erage of the retrieved demand history. To maintain the
user-perceivable performance, an appropriate deadline
D is selected, which is either 50ms for short tasks, or
the task’s computation time, with memory in the active
state, plus 50ms for long tasks. Based on this dead-
line, IAMEM calculates PS, the lowest possible power
state of a memory rank, to fit the task execution within
the deadline when all predicted memory accesses en-
counter power state transitions. The prediction algo-
rithm is shown in Figure 5. The resulting PS gives
us the needed power state to accomplish the task be-
fore the deadline and can be any of the five states:
Active Standby (ACT STBY), Active Powerdown
(ACT PDN), Precharge Powerdown Fast (PRE FAST),

5
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Tavg = Time/Count;
Mavg = MemoryRe f s/Count;

i f (Tavg <= 50ms)
D = 50ms;

else
D = Tavg +50ms;

i f (Tavg +Mavg ∗LSELF REF < D)
PS = SELF REF ;

else i f (Tavg +Mavg ∗LPRE SLOW < D)
PS = PRE SLOW ;

else i f (Tavg +Mavg ∗LPRE FAST < D)
PS = PRE FAST ;

else i f (Tavg +Mavg ∗LACT PDN < D)
PS = ACT PDN;

else
PS = ACT ST BY ;

Figure 5: The power-state prediction algorithm for an
upcoming task. LSELF REF , LPRE SLOW , LPRE FAST and
LACT PDN are the transition latencies from SELF REF,
PRE SLOW, PRE FAST and ACT PDN state to
ACT STBY state, respectively.

Precharge Powerdown Slow (PRE SLOW), or Self Re-
fresh (SELF REF). PRE STBY is not considered as a
viable state for the predictor as ACT PDN offer bet-
ter energy efficiency and lower delays than PRE STBY.
PRE STBY should only be used as an intermediate con-
necting state when a lower power state (PRE SLOW,
PRE FAST and SELF REF) is selected, but not as a
steady end state to run the task. Finally, PS is set in
the memory controller which transitions a rank to the
predicted power state after any access to that rank fin-
ishes. Therefore, a rank is transitioned to ACT STBY
state upon the first access request and then transitioned
to PS after that access completes. Once a task com-
pletes and the CPU enters an idle state, all ranks are set
to SELF REF state and will remain in that state until a
new memory request arrives.

Selection of ACT STBY state indicates that the run-
ning task cannot tolerate any transition delays to finish
before the deadline and thus the task must be executed at
the highest performance. Selection of low-power states,
on the other hand, indicates that the running task can tol-
erate power-state transition delays associated with the se-
lected power state while still being able to meet the dead-
line. We should note that the calculations in Figure 5 as-
sume the worst case scenario where memory I/Os are not
clustered but arrive one at a time, since we are unable to
capture the exact access patterns but only the total num-
ber of accesses during the task execution. Subsequently,

the calculated delays are the maximum predicted delays
the task may encounter, minimizing the possibility that
the tasks would continue past the deadline. If memory
accesses are bursty, arriving together, the actual exposed
delays will be lower.

To avoid exposing potentially large delays to the users
while still providing some energy savings, we utilize
the ACT PDN state during the training of the predictor,
when the entry in the prediction table is not found. The
ACT PDN state significantly reduces energy consump-
tion as compared to ACT STBY while keeping the de-
lays low. Finally, interaction IDs are unique across ap-
plications and thus can be maintained in a single table in
the kernel across executions for all applications, further
minimizing the impact of training.

3.5 Improving Prediction Granularity
IAMEM prediction mechanism described earlier utilizes
only a single number of memory references to all mem-
ory spaces. Once the prediction is made, both user and
kernel memory are maintained in the same predicted
power state. If this state turns out to be ACT STBY
state, user memory occupied by the given task and the
entire kernel memory will be fully powered during the
task execution. This behavior may be detrimental to en-
ergy efficiency, if for example, the task is computation-
ally intensive with low kernel activity. Subsequently, we
extend the design of IAMEM by using two performance
counters to monitor references to user and kernel mem-
ory individually. We further split MemoryRefs variable
in Figure 4 into two fields UserRefs and KernelRefs. We
note that user memory and kernel memory including the
buffer cache are allocated into separate memory ranks to
maximize management efficiency.

Similar to the previous algorithm, a dual prediction al-
gorithm is proposed. In the dual prediction algorithm
IAMEM first calculates the average task length Tavg, the
average number of user memory references Mu and ker-
nel memory references Mk. Then based on the allowed
task extension E, IAMEM calculates the lowest com-
bination of power states for user memory PSu and for
kernel memory PSk, to keep the overall transition delays
from both memory spaces below E. Finally, in the case
of multiple concurrent threads the thread with the high-
est demand for memory will dictate the power state for
memory.

3.6 Improving Monitoring Accuracy
So far, we have relied on monitoring memory accesses to
estimate the worst-case transition overheads for a given
task, by assuming that every memory access will require
a power state transition. However, some of memory ref-

6
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erences may arrive in a cluster and encounter one power
state transition. To address this issue, we can use another
performance counter to count the actual number of power
state transitions that a given task encountered. This will
allow IAMEM to update the variables of kernel and user
memory reference in the prediction table with the actual
number of memory references that encountered power
state transitions. Subsequently, the algorithms in sin-
gle and dual prediction remain unchanged except the M
variables now correspond to the numbers of power state
transitions that occurred in user and kernel memory. Uti-
lization of the actual power state transitions accounts for
traffic burstiness and as a result, eliminates the inaccu-
racy resulting from monitoring only memory accesses in
the original design.

3.7 Preserving Performance
When a low-power state is predicted for a given task, the
accumulated transition delays could become exposed to
the user, resulting in performance degradation for longer
tasks. The delays can be significant when the long task
with high memory activity is mispredicted and the mem-
ory is kept in a low power state. To prevent excessive task
extension, we propose an early-detect optimization to de-
tect the possible user-perceivable degradation before the
task completion. Observing that the scheduler in the ker-
nel will interrupt task execution every 100ms to check if
other processes should be scheduled, we add a monitor-
ing module into the scheduler to monitor the given task
execution for potentially missed deadlines. Every time
the scheduler is invoked, the monitoring module reads
the performance counter that counts the number of power
state transitions from a low-power state to ACT STBY
state and calculates the actual delay that the current run-
ning task has encountered so far. Once the delay exceeds
the allowed 50ms extension, the monitoring module will
raise the memory power state to the next higher level. If
the next higher selection is ACT PDN state, the monitor-
ing will continue. Seeing an additional delay of 50ms,
due to the power state transitions, the memory power
state is switched to ACT STBY for the remaining task
execution. This optimization will minimize the potential
delays that are exposed to the user.

4 Methodology

We use trace-driven simulation to evaluate the proposed
IAMEM and compare it with the following mechanisms:

• PAVM. Power-Aware Virtual Memory: The exist-
ing state-of-the-art per-process mechanism which
keeps the ranks occupied by the currently running
process and the ranks occupied by kernel memory

in the ACT STBY state during the process execu-
tion, while keeping all other ranks in SELF REF.

• ODPD. On-Demand Powerdown: An existing
mechanism that keeps all ranks in the system in the
ACT PDN state during execution and makes tran-
sitions to ACT STBY on memory request arrival.
This is the special case of the Dynamic Rank Power
Down technique implemented in Intel Core i CPUs,
with the idle timeout value set to zero to minimize
energy consumption.

• ODSR. On-Demand Self Refresh: We propose a
complementary mechanism to ODPD that keeps all
ranks in the system in SELF REF and transitions to
ACT STBY upon a memory request arrival.

• ORACLE. A per-task mechanism that utilizes the
future knowledge to select optimal power states for
ranks occupied by user and kernel memory for each
incoming task.

Each of the evaluated mechanisms will put all ranks in
the system to SELF REF state when a task completes and
the system begins idling. The simulator includes a task
scheduler as well as a memory simulator. The memory
simulator includes a memory controller and two DDR3-
1066 DIMMs, each consisting of two 1GB ranks. The
ranks are allocated to minimize fragmentation of mem-
ory for running processes across multiple ranks [13]. Fi-
nally, the energy management mechanism makes mem-
ory power decisions upon each UI event and the memory
simulator executes the corresponding power-state transi-
tions for the accessed ranks and calculates energy con-
sumption according to Figure 2.

The application traces used in the simulation were col-
lected using a modified Linux kernel 2.6.30 running on
Intel Core i7-920 CPU with 4GB DDR3-1066. All traces
contain data of UI events and process activity from a
large number of usage sessions in the GNOME envi-
ronment. UI events were collected with the modified
X-Monitor, including the timestamp of each event and
the interaction ID uniquely identifying the GUI compo-
nent. Process activity traces were collected with Linux
Trace Toolkit that logs program execution details from a
patched Linux kernel. Based on the ordered event times-
tamps, we are able to simulate the dynamic execution
progress of the traced applications, so that the compu-
tation time for each UI-triggered task can be calculated
accurately.

We set up two performance counters: one for count-
ing the event MEM LOAD RETIRED.L3 MISS that oc-
curred in user mode, and the other for counting the same
event in kernel mode [11] to measure last level (L3)
cache misses. Each of the counters was read as soon
as an UI event was captured, and was read again upon
the completion of the triggered task. The difference of

7
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Traced Trace Num.of Num.of Num.of Average Average user Average kernel
applications length interaction IDs short tasks long tasks task length memory ref. memory ref.

AbiWord 3.1 hrs 179 22840 2080 0.02 sec 7794 2378
Gnumeric 2.9 hrs 342 7804 1416 0.05 sec 19979 5013

Anjuta 3.9 hrs 458 14300 1768 0.03 sec 4127 2457
GIMP 3.3 hrs 228 3356 2440 0.14 sec 39409 13660
LiVES 2.6 hrs 166 2728 1208 0.51 sec 67319 381907

Memtester 0.1 hrs 1 0 20 167.78 sec 264112456 10389729

Table 1: Statistics of application traces.

the two counter values is considered as the number of
references in user or kernel memory during this task ex-
ecution.

We use five commonly executed interactive applica-
tions and one benchmark, shown in Table 1: AbiWord
– a word processing application; Gnumeric – a spread-
sheet application; Anjuta – an Integrated Development
Environment for C/C++ and Java development; GIMP –
an image processing application; LiVES – an integrated
video editing and playback application; Memtester –
a memory benchmark that intensively tests the perfor-
mance of main memory. The traces were collected over
a period of several hours and the trace length is shown
in the second column. The number of interaction IDs
presents the total number of unique user interactions in
each application and serves as an indicator of the GUI
complexity for the application. In case of Memtester,
there is only one interaction to start the benchmark. Ta-
ble 1 also lists the numbers of short tasks (shorter than
50ms), long tasks (longer than 50ms), and the aver-
age task length for each application. Finally, the aver-
age numbers of memory references in user and kernel
memory specifically indicate the per-task demand on the
memory subsystem.

4.1 Performance Demand of Applications

Figure 6 shows the distribution of task processing de-
mand for each application based on ORACLE’s optimal
power selection for user and kernel memory that maxi-
mizes energy savings while eliminating delays exposed
to the user. AbiWord, Gnumeric, Anjuta and GIMP have
generally lower performance demand because most of
their tasks require users to think to complete interactive
operations such as editing text. Subsequently, user mem-
ory can stay in either SELF REF or PRE SLOW state for
a majority of the time during the task execution.

On the other hand, LiVES work on large video clips,
resulting in significantly higher demand for memory per-
formance. As a result, user memory has to spend more
of its time in the higher performance states (PRE FAST,
ACT PDN and ACT STBY) to prevent delays from be-
ing exposed. Finally, Memtester is a memory intensive
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Figure 6: Task performance demand based on the ORA-
CLE’s optimal power.

benchmark that constantly reads and writes the memory
and requires the maximum performance. Therefore, user
memory must stay in the ACT STBY state all the time to
prevent user perceived delays.

Figure 6 also shows that the performance requirements
from kernel memory is lower than user memory. This is
because the applications usually invoke few system calls
and perform most processing in their own virtual address
space, creating lower kernel memory activity as shown in
Table 1. Subsequently, kernel memory can stay for 77%
of the time in SELF REF state for AbiWord, Gnumeric,
Anjuta, and GIMP. However, LiVES and Memtester de-
mand higher performance from kernel memory and ker-
nel memory must stay in the high power state for the ma-
jority of the time to prevent performance degradation.

5 Evaluation

5.1 Energy
Figure 7 shows the average per-task memory en-
ergy consumption for each mechanism and application.
The energy bars are divided into energy consumed in
five power states: ACT STBY, ACT PDN, PRE FAST,
PRE SLOW, and SELF REF. The energy consumption

8
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Figure 7: Average per-task memory energy consumption for processing each task normalized to ORACLE.

Applications ORACLE PAVM ODPD ODSR IAMEM
AbiWord 1093.05 1503.50 1364.87 1028.45 1105.24
Gnumeric 1119.14 1444.48 1309.74 979.28 1118.74

Anjuta 1276.92 1698.20 1573.95 1245.92 1342.80
GIMP 1262.46 2029.42 1769.18 1100.90 1411.61
LiVES 1648.19 2313.06 1921.93 1202.21 1787.75

Memtester 5022.28 5025.04 3803.16 1547.72 4998.94

Table 2: Total memory energy consumption (in Joules) during the entire application runtime.

of each mechanism accounts for all ranks in the system
during the task execution, and is normalized to ORA-
CLE.

PAVM always keeps user and kernel memory in
ACT STBY state during process execution, therefore
consuming the most energy, 187% more than ORACLE.
ODPD follows PAVM with 119% more energy consump-
tion than ORACLE, because it keeps all memory in
ACT PDN state during the task execution and it is clearly
more than necessary for most tasks to eliminate user per-
ceived delays, as show in Figure 6. Additionally, ODPD
does not attempt to optimize energy as other mecha-
nisms, which only transition the accessed ranks to the
appropriate state. IAMEM closely matches the energy
consumption profile of ORACLE through sophisticated
demand matching prediction, yielding close to optimal
energy efficiency. Subsequently, IAMEM shows less
than 14% difference in energy consumption from OR-
ACLE, reducing the energy consumption of PAVM and
ODPD by 59% and 47% respectively. In the best case oc-
curring in AbiWord and Anjuta, where PRE SLOW and
SELF REF states combined can fit 94% of the time for
user memory and 98% of the time for kernel memory,
as shown in Figure 6, IAMEM yields as much as 69%
improvement in energy efficiency as compared to PAVM
and ODPD.

ODSR consumes the least amount of energy when

we only consider main memory, yielding 26% less en-
ergy consumption than ORACLE, since all ranks are
kept in SELF REF state that has the lowest power de-
mand. However, executing tasks with lower energy con-
sumption than ORACLE is inefficient as it will expose
delays to the user and may further increase the energy
consumption of the entire system due to the longer run-
time. Furthermore, ODSR misses the goal of this pa-
per for transparent energy optimizations that do not ex-
pose delays to the user. This scenario also occurs for
ODPD in Memtester. As shown in Figure 6, Memtester
requires ACT STBY state for most of the execution time
to avoid performance degradation. However, ODPD uti-
lizes ACT PDN, and exposes delays to the user. IAMEM
still performs almost the same as ORACLE in this case,
since it keeps using ACT STBY state for user memory
as required, while recognizing the relatively less demand
for kernel memory performance and using the lower
ACT PDN state when necessary.

While Figure 7 shows the energy consumption for
processing tasks, it does not reflect the memory energy
consumption over the entire execution time since the
system idle time is not included. Each of the mecha-
nisms puts all memory ranks in SELF REF state when
the system becomes idle, consuming the same amount
of idle energy. Therefore, the overall improvements in
energy efficiency originate from the energy savings ob-
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tained during the task execution. Table 2 shows the to-
tal memory energy consumption during the whole pro-
gram execution, including the idle time, for each appli-
cation and each mechanism. As we can see, even con-
sidering the total execution time of several hours long
(Table 1), IAMEM still gains significant energy savings
over PAVM and ODPD, and matches energy consump-
tion of ORACLE with less than 3% difference. For the
first five applications, IAMEM consumes 25% and 15%
less energy as compared to PAVM and ODPD, respec-
tively. IAMEM energy reduction drops in Memtester due
to the full power demand from the extremely memory-
intensive tasks. Nevertheless, IAMEM still offers slight
energy savings as compared to PAVM in this case.

5.2 Performance

While reducing energy consumption is important, preser-
vation of the performance is the goal of this research.
Performance degradation can negate any energy savings
and negatively affect the user experience. Figure 8 shows
the average task length for each application and each
mechanism normalized to ORACLE. The task runtime is
divided into: 1) task processing time; and 2) the power-
state transition time due to the transitions from the lower
power state to ACT STBY state.

We notice that ORACLE introduces some amount of
transition time into the task processing time as compared
to PAVM that maintains the original task runtime. How-
ever, the shorter runtime in PAVM does not translate into
better performance since users are not able to notice the
shorter task completion and initiate any subsequent inter-
actions. ORACLE always selects the best power state to
fit the task execution within the user’s perception thresh-
old. The included power-state transition time in ORA-
CLE is not exposed to the user, keeping the user behavior
unchanged just like in PAVM. Similarly, ODPD executes
most tasks at the higher performance level than desired,
resulting in excess energy consumption as shown in Fig-
ure 7. Therefore, a task that is executing longer than its
execution in ORACLE exposes noticeable delay to the
user, while running the task faster is not energy efficient.

Due to the large transition latency (971.96ns) from
SELF REF state, ODSR incurs the most performance
degradation, prolonging task execution by 54% on av-
erage as compared to ORACLE. Memtester exposes the
worst case for ODSR with 160% more delay exposed
to the user. Memory intensive tasks in Memtester re-
sult in noticeable delays even in case of ODPD, which
only encounters 6ns transition latency for each memory
access. IAMEM dynamically recognizes memory inten-
sive tasks and provides appropriate power state similarly
to ORACLE, only exposing slightly more than 1% delay
to the user for each application. Combining the results

Figure 9: Energy consumption of IAMEM with single
and dual prediction.

from Figure 7 and Figure 8, we observe that IAMEM
is the most energy efficient mechanism and almost per-
fectly matches the behavior of ORACLE. This indicates
that utilization of the interaction context allows IAMEM
to accurately predict the demand placed on the system
and achieve near-optimal energy efficiency without per-
formance degradation.

5.3 The Need for Dual Prediction

Figure 7 showed IAMEM with dual prediction for user
memory and kernel memory separately, as described in
Section 3.5. Alternatively, IAMEM may also view user
and kernel memory as a whole, predicting only a sin-
gle power state for both memory spaces. Figure 9 com-
pares the average per-task energy of IAMEM with single
power prediction (IAMEMC), normalized to ORACLE.
This separation allows us to study the contribution of en-
ergy consumed by user and kernel memory to the total
per-task energy consumption.

As shown in Figure 6, difference in demand for kernel
and user performance allows IAMEM to reduce energy
consumption in both kernel and user spaces. Therefore,
IAMEM reduces the combined energy consumption of
user and kernel memory by 3%, on average, as compared
to IAMEMC. This benefit of the dual prediction justifies
the need for predicting power individually for user and
kernel memory.

5.4 Delay Reduction with Early-Detect

Preserving performance and bounding delays exposed to
the user is critical for overall energy efficiency and the
user’s satisfaction. Therefore, IAMEM adopts the early-
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Figure 8: Average per-task length normalized to ORACLE.

detect optimization which uses the scheduler to check
every 100ms as discussed in Section 3.7. This optimiza-
tion will eliminate significant performance degradation
for the long running tasks. Table 3 compares the average
exposed delays of the long running tasks (longer than the
100ms scheduler interval) for IAMEM with and without
this optimization. The delays shown only count the extra
times that exceed the allowed 50ms extension and may
be noticed by the user. We can see that IAMEM with
this optimization significantly reduces the amount of de-
lays exposed to the user for long running tasks. The final
small extension above 50ms is at the lower end of the
perception threshold range (50-100ms), and will be un-
noticeable to the user.

Alternatively, we can remove the optimization since
IAMEM without early-detect still manages to keep the
delays reasonable that may not be noticed by most users.
In addition, IAMEM without early-detect would reduce
the per-task energy consumption in Figure 7 by addi-
tional 2%, on average. However, the goal of this research
is to maximize energy savings without affecting the user
experience. The early-detect optimization is critical in
achieving this goal, and we subsequently included it in
IAMEM implementation and all previous results reflect
the inclusion of this optimization.

6 Related Work

Energy management for main memory can be imple-
mented in hardware, software, or the combination of
both. Hardware level approaches generally utilize the
memory controller to monitor the memory traffic as well
as the access pattern, and make the power state transi-
tions for specific memory devices based on the observed
energy-saving opportunities. Lebeck et al. [12] studied
the interaction of page placement with static and dy-
namic hardware policies to reduce memory power dissi-

Num.of Num.of Delay Delay
Application long delayed w/ w/o

running long early- early-
tasks running detect detect

AbiWord 1808 380 4.5 ms 5.0 ms
Gnumeric 800 220 7.6 ms 9.8 ms

Anjuta 984 120 3.5 ms 13 ms
GIMP 1536 408 13 ms 15 ms
LiVES 760 188 10.8 ms 11.7 ms

Memtester 14 2 51 ms 53 ms

Table 3: Average delays of the delayed long running
tasks in standard IAMEM with the early-detect optimiza-
tion and alternative design without the optimization.

pation. The cooperation between the hardware and the
OS was also studied in [12]. Subsequently, Pisharah
et al. [22] proposed another approach to save memory
energy by introducing a hardware called Energy-Saver
Buffers to hide the resynchronization costs when reac-
tivating memory modules. Fan et al. [7] further in-
vestigated memory controller policies for manipulating
DRAM power states in cache-based systems and devel-
oped an analytic model that approximates the idle time
of DRAM chips using an exponential distribution. Fur-
thermore, observing that significant energy is consumed
when memory is actively idle during DMA transfers,
Pandy et al. [21] proposed several energy management
mechanisms to improve the concurrency level between
multiple I/Os to maximize the memory utilization.

Hardware-level energy management may suffer from
inaccuracy and may cause unexpected performance
degradation. Software-level energy management, on the
other hand, can provide more detailed context of exe-
cution to make timely power state transitions. Delaluz
et al. [5] proposed a compiler-directed approach to clus-
ter the data across memory banks and insert power-state
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transition instructions into programs by profiling. How-
ever, compiler-directed schemes can only work on a sin-
gle application at a time and demand sophisticated pro-
gram analysis support. To address the issue, Delaluz et
al. [6] also proposed an operating system based solution
where the OS scheduler directs the power state transi-
tions by keeping track of accesses for each process in the
system. Subsequently, Huang et al. [8] proposed Power-
Aware Virtual Memory that manages the power states of
memory devices on a per-process basis. A cooperative
software-hardware mechanism [10] was further proposed
to combine PAVM and the underlying hardware. Huang
et al. [9] also proposed memory-reshaping mechanisms
that coalesce short idle periods into longer ones through
page migration to maximize energy savings. Targeting
the buffer cache, Bi et al. [2] utilized the OS I/O handling
routines to hide the delays due to memory power state
transitions to minimize the impact of aggressive energy
management. Finally, Li et al. [15] proposed a mecha-
nism to guarantee the performance by temporarily dis-
abling memory energy management.

7 Conclusion

As current applications are becoming more data-centric,
computer systems are equipped with larger capacity and
higher performance main memory. As a result, energy
consumption of main memory is significantly increasing.
In this paper, we addressed interactive systems where
most tasks are initiated by the user, and presented the
design of IAMEM, a unified approach to manage the en-
ergy consumption of the entire memory space. By cor-
relating the memory performance demand to the user in-
teractions, IAMEM is able to accurately select suitable
memory power states for UI-triggered tasks, saving en-
ergy while preserving the performance of the system. We
have shown that compared to the state-of-the-art mech-
anisms, IAMEM saves 28%-68% of the memory energy
consumed for task processing, resulting in up to 16% re-
duction of the total memory energy consumption during
the entire program execution. In addition to the signifi-
cant energy savings, IAMEM also successfully maintains
the user-perceivable performance by hiding delays asso-
ciated with energy management.
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